Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 34(11-12): 530-539, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36793189

RESUMO

Adeno-associated virus (AAV)-mediated gene therapy has great potential for treating a wide range of retinal degenerative diseases. However, some initial enthusiasm for gene therapy has been tempered by emerging evidence of AAV-associated inflammation, which in several instances has contributed to clinical trial discontinuation. Currently, there is a paucity of data describing the variable immune responses to different AAV serotypes, and similarly, little is known regarding how these responses differ depending on route of ocular delivery, including in animal models of disease. In this study, we characterize the severity and retinal distribution of AAV-associated inflammation in rats triggered by delivery of five different AAV vectors (AAV1, AAV2, AAV6, AAV8, and AAV9), each of which contained enhanced green fluorescent protein (eGFP) driven under control of the constitutively active cytomegalovirus promoter. We further compare the inflammation across three different potential routes (intravitreal, subretinal, and suprachoroidal) of ocular delivery. Compared to buffer-injected controls for each route of delivery, AAV2 and AAV6 induced the most inflammation across all routes of delivery of vectors tested, with AAV6 inducing the highest levels of inflammation when delivered suprachoroidally. AAV1-induced inflammation was highest when delivered suprachoroidally, whereas minimal inflammation was seen with intravitreal delivery. In addition, AAV1, AAV2, and AAV6 each induce infiltration of adaptive immune cells like T cells and B cells into the neural retina, suggesting an innate adaptive response to a single dose of virus. AAV8 and AAV9 induced minimal inflammation across all routes of delivery. Importantly, the degree of inflammation was not correlated with vector-mediated transduction and expression of eGFP. These data emphasize the importance of considering ocular inflammation when selecting AAV serotypes and ocular delivery routes for the development of gene therapy strategies.


Assuntos
Dependovirus , Degeneração Retiniana , Animais , Ratos , Sorogrupo , Vetores Genéticos/genética , Retina/metabolismo , Degeneração Retiniana/metabolismo , Inflamação/metabolismo , Transdução Genética
2.
Gene Ther ; 30(3-4): 362-368, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36175490

RESUMO

In humans, mutations in the beta subunit of cGMP-phosphodiesterase type 6 (PDE6B) cause autosomal recessive retinitis pigmentosa (RP), which typically has an aggressive clinical course of early-onset severe vision loss due to rapid photoreceptor degeneration. In this study, we describe the generation of a novel Pde6b-deficient rat model using CRISPR-Cas9 genome editing. We characterize the model at multiple time points using clinical imaging modalities as well as histology with immunohistochemistry to show rapid photoreceptor degeneration compared to wild-type and heterozygous animals. We describe the manufacture of two different adeno-associated viral (AAV) vectors (AAV2/1, AAV2/5) under current Good Manufacturing Practices (cGMP) and demonstrate their ability to drive human PDE6B expression in vivo. We further demonstrate the ability of AAV-mediated subretinal gene therapy to delay photoreceptor loss in Pde6b-deficient rats compared to untreated controls. However, severe progressive photoreceptor loss was noted even in treated eyes, likely due to the aggressive nature of the disease. These data provide useful preclinical data to guide the development of potential human gene therapy for PDE6B-associated RP. In addition, the rapid photoreceptor degeneration of the Pde6b-deficient rat with intact inner retina may provide a useful model for the study of cell replacement strategies.


Assuntos
Degeneração Retiniana , Retinose Pigmentar , Ratos , Animais , Humanos , Degeneração Retiniana/genética , Degeneração Retiniana/terapia , Dependovirus/genética , Retina/metabolismo , Retinose Pigmentar/genética , Terapia Genética/métodos , Modelos Animais de Doenças , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 6/metabolismo
3.
Cell Transplant ; 31: 9636897221104451, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35758274

RESUMO

Loss of photoreceptor cells is a primary feature of inherited retinal degenerative disorders including age-related macular degeneration and retinitis pigmentosa. To restore vision in affected patients, photoreceptor cell replacement will be required. The ideal donor cells for this application are induced pluripotent stem cells (iPSCs) because they can be derived from and transplanted into the same patient obviating the need for long-term immunosuppression. A major limitation for retinal cell replacement therapy is donor cell loss associated with simple methods of cell delivery such as subretinal injections of bolus cell suspensions. Transplantation with supportive biomaterials can help maintain cellular integrity, increase cell survival, and encourage proper cellular alignment and improve integration with the host retina. Using a pig model of retinal degeneration, we recently demonstrated that polycaprolactone (PCL) scaffolds fabricated with two photon lithography have excellent local and systemic tolerability. In this study, we describe rapid photopolymerization-mediated production of PCL-based bioabsorbable scaffolds, a technique for loading iPSC-derived retinal progenitor cells onto the scaffold, methods of surgical transplantation in an immunocompromised rat model and tolerability of the subretinal grafts at 1, 3, and 6 months of follow-up (n = 150). We observed no local or systemic toxicity, nor did we observe any tumor formation despite extensive clinical evaluation, clinical chemistry, hematology, gross tissue examination and detailed histopathology. Demonstrating the local and systemic compatibility of biodegradable scaffolds carrying human iPSC-derived retinal progenitor cells is an important step toward clinical safety trials of this approach in humans.


Assuntos
Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana , Retinose Pigmentar , Animais , Materiais Biocompatíveis/farmacologia , Humanos , Células-Tronco Pluripotentes Induzidas/transplante , Ratos , Retina/patologia , Degeneração Retiniana/patologia , Degeneração Retiniana/terapia , Retinose Pigmentar/terapia , Transplante de Células-Tronco/métodos , Suínos
4.
Hum Mol Genet ; 31(14): 2406-2423, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35181781

RESUMO

The human choroid is a heterogeneous, highly vascular connective tissue that dysfunctions in age-related macular degeneration (AMD). In this study, we performed single-cell RNA sequencing on 21 human choroids, 11 of which were derived from donors with early atrophic or neovascular AMD. Using this large donor cohort, we identified new gene expression signatures and immunohistochemically characterized discrete populations of resident macrophages, monocytes/inflammatory macrophages and dendritic cells. These three immune populations demonstrated unique expression patterns for AMD genetic risk factors, with dendritic cells possessing the highest expression of the neovascular AMD-associated MMP9 gene. Additionally, we performed trajectory analysis to model transcriptomic changes across the choroidal vasculature, and we identified expression signatures for endothelial cells from choroidal arterioles and venules. Finally, we performed differential expression analysis between control, early atrophic AMD, and neovascular AMD samples, and we observed that early atrophic AMD samples had high expression of SPARCL1, a gene that has been shown to increase in response to endothelial damage. Likewise, neovascular endothelial cells harbored gene expression changes consistent with endothelial cell damage and demonstrated increased expression of the sialomucins CD34 and ENCM, which were also observed at the protein level within neovascular membranes. Overall, this study characterizes the molecular features of new populations of choroidal endothelial cells and mononuclear phagocytes in a large cohort of AMD and control human donors.


Assuntos
Neovascularização de Coroide , Degeneração Macular Exsudativa , Inibidores da Angiogênese , Corioide , Neovascularização de Coroide/genética , Células Endoteliais , Humanos , Macrófagos , Transcriptoma/genética , Fator A de Crescimento do Endotélio Vascular , Acuidade Visual , Degeneração Macular Exsudativa/complicações
5.
Retin Cases Brief Rep ; 16(1): 111-117, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31764884

RESUMO

PURPOSE: 1) To describe a case of autoimmune retinopathy mimicking heritable photoreceptor degeneration in a patient with common variable immune deficiency and 2) to investigate the humoral and cell-mediated branches of the immune system in this patient to better understand the mechanism of immune-mediated photoreceptor damage in this disease. METHODS: Retrospective chart review with evaluation of multimodal imaging, genotype analysis, and investigation of circulating autoantibodies and T-cell response to retinal antigens. RESULTS: A 40-year-old woman with bilateral, progressive vision loss was referred for evaluation of a possible inherited retinal degeneration. She was found to have asymmetric peripheral visual field constriction, cystoid macular edema, vitreous cells, and bone spicule-like pigmentary changes in both eyes. An extensive workup for underlying infectious or inflammatory causes was unrevealing, and molecular analysis for heritable retinal degeneration failed to identify a plausible disease-causing genotype. Screening for antiretinal antibodies showed the presence of multiple antiretinal antibodies, consistent with a diagnosis of autoimmune retinopathy. Immunologic workup demonstrated markedly decreased levels of serum IgA and IgG, consistent with common variable immune deficiency. T-cells isolated from the patient showed increased proliferation when stimulated with human retinal proteins, supporting a role for both cell- and humoral-mediated autoimmunity. Treatment with mycophenolate mofetil and intravenous immunoglobin therapy slowed the progression of disease and resulted in preservation of her central vision. CONCLUSION: Autoimmune retinopathy can be seen in common variable immune deficiency and has clinical findings similar to heritable photoreceptor degeneration. Both the humoral and cellular immune responses are involved in the pathophysiology. Immune modulatory therapy has stabilized the disease course in this patient and may play an important role in the management of autoimmune retinopathy.


Assuntos
Doenças Autoimunes , Imunodeficiência de Variável Comum , Degeneração Retiniana , Adulto , Doenças Autoimunes/diagnóstico , Imunodeficiência de Variável Comum/complicações , Diagnóstico Diferencial , Feminino , Humanos , Degeneração Retiniana/diagnóstico , Estudos Retrospectivos
6.
J Ocul Pharmacol Ther ; 37(10): 575-579, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34597181

RESUMO

Purpose: Despite numerous recent advances in retinal gene therapy using adeno-associated viruses (AAVs) as delivery vectors, there remains a crucial need to identify viral vectors with the ability to transduce specific retinal cell types and that have a larger carrying capacity than AAV. In this study, we evaluate the retinal tropism of 2 chimeric helper-dependent adenoviruses (HDAds), helper-dependent adenovirus serotype 5 (HDAd5)/3 and HDAd5/35, both ex vivo using human retinal explants and in vivo using rats. Methods: We transduced cultured human retinal explants with HDAd5/3 and HDAd5/35 carrying an eGFP vector and evaluated tropism and transduction efficiency using immunohistochemistry. To assess in vivo transduction efficiency, subretinal injections were performed in wild-type Sprague-Dawley rats. For both explants and subretinal injections, we delivered 10 µL (1 × 106 vector genomes/mL) and assessed tropism at 7- and 14-days post-transduction, respectively. Results: HDAd5/3 and HDAd5/35 both transduced human retinal ganglion cells (RGCs) and Müller cells, but not photoreceptors, in human retinal explants. However, subretinal injections in albino rats resulted in transduction of the retinal pigmented epithelium only, highlighting species-specific differences in retinal tropism and the value of a human explant model when testing vectors for eventual human gene therapy. Conclusions: Chimeric HDAds are promising candidates for the delivery of large genes, multiple genes, or neuroprotective factors to Müller cells and RGCs. These vectors may have utility for targeted therapy of neurodegenerative diseases primarily involving retinal ganglion or Müller cell types, such as glaucoma or macular telangiectasia type 2.


Assuntos
Adenoviridae/metabolismo , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Retina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Células Ependimogliais/metabolismo , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Células Ganglionares da Retina/metabolismo
7.
Exp Eye Res ; 207: 108566, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838142

RESUMO

Emerging treatment strategies for retinal degeneration involve replacing lost photoreceptors using supportive scaffolds to ensure cells survive the implantation process. While many design aspects of these scaffolds, including material chemistry and microstructural cues, have been studied in depth, a full set of design constraints has yet to be established. For example, while known to be important in other tissues and systems, the influence of mechanical properties on surgical handling has not been quantified. In this study, photocrosslinked poly(ethylene glycol) dimethacrylate (PEGDMA) was used as a model polymer to study the effects of scaffold modulus (stiffness) on surgical handling, independent of material chemistry. This was achieved by modulating the molecular weight and concentrations of the PEGDMA in various prepolymer solutions. Scaffold modulus of each formulation was measured using photo-rheology, which enabled the collection of real-time polymerization data. In addition to measuring scaffold mechanical properties, this approach gave insight on polymerization kinetics, which were used to determine the polymerization time required for each sample. Scaffold handling characteristics were qualitatively evaluated using both in vitro and ex vivo trials that mimicked the surgical procedure. In these trials, scaffolds with shear moduli above 35 kPa performed satisfactorily, while those below this limit performed poorly. In other words, scaffolds below this modulus were too fragile for reliable transplantation. To better compare these results with literature values, the compressive modulus was measured for select samples, with the lower shear modulus limit corresponding to roughly 115 kPa compressive modulus. While an upper mechanical property limit was not readily apparent from these results, there was increased variability in surgical handling performance in samples with shear moduli above 800 kPa. Overall, the knowledge presented here provides important groundwork for future studies designed to examine additional retinal scaffold considerations, including the effect of scaffold mechanical properties on retinal progenitor cell fate.


Assuntos
Metacrilatos/química , Polietilenoglicóis/química , Retina/citologia , Degeneração Retiniana/cirurgia , Transplante de Células-Tronco , Células-Tronco/citologia , Alicerces Teciduais/química , Animais , Reagentes de Ligações Cruzadas , Módulo de Elasticidade/fisiologia , Degeneração Retiniana/fisiopatologia , Suínos
8.
Hum Gene Ther ; 31(23-24): 1288-1299, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32948113

RESUMO

Viral-mediated gene augmentation offers tremendous promise for the treatment of inherited retinal diseases. The development of effective gene therapy requires an understanding of the vector's tissue-specific behavior, which may vary depending on serotype, route of delivery, or target species. Using an ex vivo organotypic explant system, we previously demonstrated that retinal tropism and transduction of adeno-associated virus type 2 (AAV2) vary significantly depending on serotype in human eyes. However, the ex vivo system has limited ability to assess route of ocular delivery, and relatively little literature exists on tropic differences between serotypes and routes of delivery in vivo. In this study, we demonstrate that retinal tropism and transduction efficiency of five different AAV2 serotypes (AAV2/1, AAV2/2, AAV2/6, AAV2/8, and AAV2/9) expressing enhanced green fluorescent protein driven by a cytomegalovirus promoter vary greatly depending on serotype and route of delivery (intravitreal, subretinal, or suprachoroidal) in rats. With subretinal delivery, all serotypes successfully transduced the retinal pigmented epithelium and outer nuclear layer (ONL), with AAV2/1 displaying the highest transduction efficiency and AAV2/2 and AAV2/6 showing lower ONL transduction. There was minimal transduction of the inner retina through subretinal delivery for any serotype. Tropism by suprachoroidal delivery mirrored that of subretinal delivery for all AAV serotypes but resulted in a wider distribution and greater ONL transduction. With intravitreal delivery, retinal transduction was seen primarily in the inner retina (retinal nerve fiber, ganglion cell, and inner nuclear layers) for AAV2/1 and AAV2/6, with AAV2/6 showing the highest transduction. When compared with data from human explant models, there are substantial differences in tropism and transduction that are important to consider when using rats as preclinical models for the development of ocular gene therapies for humans.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Doenças Retinianas/terapia , Pigmentos da Retina/genética , Animais , Vias de Administração de Medicamentos , Epitélio/metabolismo , Epitélio/patologia , Humanos , Injeções Intravítreas , Ratos , Doenças Retinianas/genética , Doenças Retinianas/patologia , Sorogrupo , Líquido Sub-Retiniano , Neurônios do Núcleo Supraquiasmático/metabolismo , Neurônios do Núcleo Supraquiasmático/patologia , Tropismo Viral/genética
9.
Hum Gene Ther ; 30(11): 1371-1384, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31456426

RESUMO

The identification of >100 genes causing inherited retinal degeneration and the promising results of recent gene augmentation trials have led to an increase in the number of studies investigating the preclinical efficacy of viral-mediated gene transfer. Despite success using adeno-associated viruses, many disease-causing genes, such as ABCA4 or USH2A, are too large to fit into these vectors. One option for large gene delivery is the family of integration-deficient helper-dependent adenoviruses (HDAds), which efficiently transduce postmitotic neurons. However, HDAds have been shown in other organ systems to elicit an immune response, and the immunogenicity of HDAds in the retina has not been characterized. In this study, HDAd serotype 5 (HDAd5) was found to successfully transduce rod and cone photoreceptors in ex vivo human retinal organ cultures. The ocular inflammatory response to subretinal injection of the HDAd5 was evaluated using a rat model. Subretinal injection of HDAd5 carrying cytomegalovirus promoter-driven enhanced green fluorescent protein (HDAd5-CMVp-eGFP) elicited a robust inflammatory response by 3 days postinjection. This reaction included vitreous infiltration of ionized calcium-binding adapter molecule 1 (Iba1)-positive monocytes and increased expression of the proinflammatory protein, intercellular adhesion molecule 1 (ICAM-1). By 7 days postinjection, most Iba1-positive infiltrates migrated into the neural retina and ICAM-1 expression was significantly increased compared with buffer-injected control eyes. At 14 days postinjection, Iba1-positive cells persisted in the retinas of HDAd5-injected eyes, and there was thinning of the outer nuclear layer. Subretinal injection of an empty HDAd5 virus was used to confirm that the inflammatory response was in response to the HDAd5 vector and not due to eGFP-induced overexpression cytotoxicity. Subretinal injection of lower doses of HDAd5 dampened the inflammatory response, but also eGFP expression. Despite their larger carrying capacity, further work is needed to elucidate the inflammatory pathways involved and to identify an immunomodulation paradigm sufficient for safe and effective transfer of large genes to the retina using HDAd5.


Assuntos
Adenoviridae/fisiologia , Vírus Auxiliares/fisiologia , Inflamação/patologia , Inflamação/virologia , Retina/patologia , Retina/virologia , Transdução Genética , Animais , Morte Celular , Feminino , Proteínas de Fluorescência Verde/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Masculino , Células Fotorreceptoras de Vertebrados/patologia , Ratos
10.
Acta Biomater ; 94: 204-218, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31055121

RESUMO

Cell replacement therapies are often enhanced by utilizing polymer scaffolds to improve retention or direct cell orientation and migration. Obstacles to refinement of such polymer scaffolds often include challenges in controlling the microstructure of biocompatible molecules in three dimensions at cellular scales. Two-photon polymerization of acrylated poly(caprolactone) (PCL) could offer a means of achieving precise microstructural control of a material in a biocompatible platform. In this work, we studied the effect of various formulation and two-photon polymerization parameters on minimum laser power needed to achieve polymerization, resolution, and fidelity to a target 3D model designed to be used for retinal cell replacement. Overall, we found that increasing the concentration of crosslink-able groups decreased polymerization threshold and the size of resolvable features while increasing fidelity of the scaffold to the 3D model. In general, this improvement was achieved by increasing the number of acrylate groups per prepolymer molecule, increasing the acrylated PCL concentration, or decreasing its molecular weight. Resulting two-photon polymerized PCL scaffolds successfully supported human iPSC derived retinal progenitor cells in vitro. Sub-retinal implantation of cell free scaffolds in a porcine model of retinitis pigmentosa did not cause inflammation, infection or local or systemic toxicity after one month. In addition, comprehensive ISO 10993 testing of photopolymerized scaffolds revealed a favorable biocompatibility profile. These results represent an important step towards understanding how two-photon polymerization can be applied to a wide range of biologically compatible chemistries for various biomedical applications. STATEMENT OF SIGNIFICANCE: Inherited retinal degenerative blindness results from the death of light sensing photoreceptor cells. To restore high-acuity vision a photoreceptor cell replacement strategy will likely be necessary. Unfortunately, single cell injection typically results in poor cell survival and integration post-transplantation. Polymeric biomaterial cell delivery scaffolds can be used to promote donor cell viability, control cellular polarity and increase packing density. A challenge faced in this endeavor has been developing methods suitable for generating scaffolds that can be used to deliver stem cell derived photoreceptors in an ordered columnar orientation (i.e., similar to that of the native retina). In this study we combined the biomaterial poly(caprolactone) with two-photon lithography to generate a biocompatible, clinically relevant scaffold suitable for retina cell delivery.


Assuntos
Materiais Biocompatíveis/química , Poliésteres/química , Retina/citologia , Animais , Caproatos , Movimento Celular , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Inflamação , Lactonas , Teste de Materiais , Microscopia Eletrônica de Varredura , Fótons , Polimerização , Reprodutibilidade dos Testes , Degeneração Retiniana/terapia , Retinose Pigmentar/fisiopatologia , Células-Tronco , Suínos , Alicerces Teciduais
11.
Stem Cells Transl Med ; 8(8): 797-809, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31004408

RESUMO

Subretinal delivery of stem cell-derived retinal cells as a strategy to treat retinal degenerative blindness holds great promise. Currently, two clinical trials are underway in which human fetal retinal progenitor cells (RPCs) are being delivered to patients by intravitreal or subretinal injection to preserve or restore vision, respectively. With the advent of the induced pluripotent stem cell (iPSC), and in turn three-dimensional derivation of retinal tissue, it is now possible to generate autologous RPCs for cell replacement. The purpose of this study was to evaluate the effect of commonly used cell isolation and surgical manipulation strategies on donor cell viability. iPSC-RPCs were subjected to various conditions, including different dissociation and isolation methods, injection cannula sizes, and preinjection storage temperatures and times. The effects of commonly used surgical techniques on both host and donor cell viability were evaluated in Yucatan mini-pigs (n = 61 eyes). We found a significant increase in cell viability when papain was used for RPC isolation. In addition, a significant decrease in cell viability was detected when using the 41G cannula compared with 31G and at storage times of 4 hours compared with 30 minutes. Although 96.4% of all eyes demonstrated spontaneous retinal reattachment following injection, retinal pigment epithelium (RPE) abnormalities were seen more frequently in eyes receiving injections via a 31G cannula; interestingly, eyes that received cell suspensions were relatively protected against such RPE changes. These findings indicate that optimization of donor cell isolation and delivery parameters should be considered when developing a subretinal cell replacement strategy. Stem Cells Translational Medicine 2019;8:797&809.


Assuntos
Técnicas de Reprogramação Celular/métodos , Células-Tronco Neurais/transplante , Cultura Primária de Células/métodos , Retina/citologia , Distrofias Retinianas/terapia , Transplante de Células-Tronco/métodos , Animais , Sobrevivência Celular , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/transplante , Células-Tronco Neurais/citologia , Papaína/farmacologia , Cultura Primária de Células/normas , Retina/efeitos dos fármacos , Transplante de Células-Tronco/efeitos adversos , Suínos , Porco Miniatura
12.
Exp Eye Res ; 174: 107-112, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29864439

RESUMO

Perturbations in WNT signaling are associated with congenital eye disorders, including familial exudative vitreoretinopathy and Norrie disease. More recently, activation of the WNT pathway has also been shown to be associated with age-related macular degeneration (AMD). In this study, we identified that in choroidal neovascular membranes from AMD patients, ß-catenin is activated specifically in the vascular endothelium, suggesting that WNT promotes pathologic angiogenesis by directly affecting vascular endothelial cells. WNT7B has been shown to be important during eye development for regression of the fetal hyaloid vasculature. However, it has not yet been established whether WNT7A and/or WNT7B are involved in neovascular AMD pathogenesis. Here, we show that WNT7A and WNT7B increase the proliferation of human dermal microvascular endothelial cells in a dose-dependent manner. Both WNT7A and WNT7B also stimulated vascular sprouting from mouse choroidal explants in vitro. To evaluate in vivo relevance, we generated mice systemically deficient in Wnt7a and/or Wnt7b. Genetic deletion of both Wnt7a and Wnt7b decreased the severity of laser injury-induced choroidal neovascularization (CNV), while individual deletion of either Wnt7a or Wnt7b did not have a significant effect on CNV, suggesting that WNT7A and WNT7B have redundant pro-angiogenic roles in vivo. Cumulatively, these findings identify specific WNT isoforms that may play a pathologic role in CNV as observed in patients with neovascular AMD. Although the source of increased WNT7A and/or WNT7B in CNV requires further investigation, WNT signaling may be a potential target for therapeutic intervention if these results are demonstrated to be relevant in human disease.


Assuntos
Neovascularização de Coroide/metabolismo , Proteínas Wnt/fisiologia , Inibidores da Angiogênese/metabolismo , Animais , Proliferação de Células/fisiologia , Neovascularização de Coroide/patologia , Células Endoteliais/patologia , Humanos , Masculino , Camundongos , Transdução de Sinais/fisiologia , beta Catenina/metabolismo
13.
Prog Retin Eye Res ; 65: 28-49, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29578069

RESUMO

Gene correction is a valuable strategy for treating inherited retinal degenerative diseases, a major cause of irreversible blindness worldwide. Single gene defects cause the majority of these retinal dystrophies. Gene augmentation holds great promise if delivered early in the course of the disease, however, many patients carry mutations in genes too large to be packaged into adeno-associated viral vectors and some, when overexpressed via heterologous promoters, induce retinal toxicity. In addition to the aforementioned challenges, some patients have sustained significant photoreceptor cell loss at the time of diagnosis, rendering gene replacement therapy insufficient to treat the disease. These patients will require cell replacement to restore useful vision. Fortunately, the advent of induced pluripotent stem cell and CRISPR-Cas9 gene editing technologies affords researchers and clinicians a powerful means by which to develop strategies to treat patients with inherited retinal dystrophies. In this review we will discuss the current developments in CRISPR-Cas9 gene editing in vivo in animal models and in vitro in patient-derived cells to study and treat inherited retinal degenerative diseases.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes/métodos , Terapia Genética/métodos , Degeneração Retiniana/terapia , Transplante de Células-Tronco , Animais , Humanos , Células-Tronco Pluripotentes Induzidas , Degeneração Retiniana/genética
14.
Hum Gene Ther ; 29(4): 424-436, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29160116

RESUMO

Advances in the discovery of the causes of monogenic retinal disorders, combined with technologies for the delivery of DNA to the retina, offer enormous opportunities for the treatment of previously untreatable blinding diseases. However, for gene augmentation to be most effective, vectors that have the correct cell-type specificity are needed. While animal models are very useful, they often exhibit differences in retinal cell surface receptors compared to the human retina. This study evaluated the use of an ex vivo organotypic explant system to test the transduction efficiency and tropism of seven different adeno-associated virus type 2 (AAV2) serotypes in the human retina and retinal pigment epithelium-choroid-AAV2/1, AAV2/2, AAV2/4, AAV2/5, AAV2/6, AAV2/8, and AAV2/9-all driving expression of GFP under control of the cytomegalovirus promoter. After 7 days in culture, it was found that AAV2/4 and AAV2/5 were particularly efficient at transducing photoreceptor cells and that AAV2/5 was highly specific to the outer nuclear layer, whereas AAV2/8 displayed consistently low transduction of photoreceptors. To validate the authenticity of the organotypic culture system, the transduction of the same set of AAVs was also compared in a pig model, in which sub-retinal injections in vivo were compared to cultured and transduced organotypic cultures ex vivo. This study shows how different AAV serotypes behave in the human retina and provides insight for further investigation of each of these serotypes for gene augmentation-based treatment of inherited retinal degeneration.


Assuntos
Dependovirus/genética , Vetores Genéticos , Retina/metabolismo , Degeneração Retiniana/terapia , Animais , Técnicas de Transferência de Genes , Humanos , Camundongos , Células Fotorreceptoras/metabolismo , Células Fotorreceptoras/patologia , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Retina/fisiopatologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Epitélio Pigmentado da Retina , Suínos , Transdução Genética , Tropismo/genética
15.
Curr Protoc Stem Cell Biol ; 42: 4A.12.1-4A.12.14, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28806854

RESUMO

This unit describes protocols for the generation of clinical-grade patient-specific induced pluripotent stem cell (iPSC)-derived retinal cells from patients with inherited retinal degenerative blindness. Specifically, we describe how, using xeno-free reagents in an ISO class 5 environment, one can isolate and culture dermal fibroblasts, generate iPSCs, and derive autologous retinal cells via 3-D differentiation. The universal methods described herein for the isolation of dermal fibroblasts and generation of iPSCs can be employed regardless of disease, tissue, or cell type of interest. © 2017 by John Wiley & Sons, Inc.


Assuntos
Técnicas de Cultura de Células/métodos , Técnicas de Reprogramação Celular/métodos , Derme , Fibroblastos , Células-Tronco Pluripotentes Induzidas , Retina , Biópsia , Derme/metabolismo , Derme/patologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Retina/metabolismo , Retina/patologia
16.
Mol Ther ; 25(9): 1999-2013, 2017 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-28619647

RESUMO

Patient-derived induced pluripotent stem cells (iPSCs) hold great promise for autologous cell replacement. However, for many inherited diseases, treatment will likely require genetic repair pre-transplantation. Genome editing technologies are useful for this application. The purpose of this study was to develop CRISPR-Cas9-mediated genome editing strategies to target and correct the three most common types of disease-causing variants in patient-derived iPSCs: (1) exonic, (2) deep intronic, and (3) dominant gain of function. We developed a homology-directed repair strategy targeting a homozygous Alu insertion in exon 9 of male germ cell-associated kinase (MAK) and demonstrated restoration of the retinal transcript and protein in patient cells. We generated a CRISPR-Cas9-mediated non-homologous end joining (NHEJ) approach to excise a major contributor to Leber congenital amaurosis, the IVS26 cryptic-splice mutation in CEP290, and demonstrated correction of the transcript and protein in patient iPSCs. Lastly, we designed allele-specific CRISPR guides that selectively target the mutant Pro23His rhodopsin (RHO) allele, which, following delivery to both patient iPSCs in vitro and pig retina in vivo, created a frameshift and premature stop that would prevent transcription of the disease-causing variant. The strategies developed in this study will prove useful for correcting a wide range of genetic variants in genes that cause inherited retinal degeneration.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Marcação de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Degeneração Retiniana/genética , Transplante de Células-Tronco , Alelos , Animais , Linhagem Celular , Ordem dos Genes , Loci Gênicos , Terapia Genética , Vetores Genéticos/genética , Recombinação Homóloga , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Íntrons , Mutação , Proteínas Serina-Treonina Quinases/genética , RNA Guia de Cinetoplastídeos , Degeneração Retiniana/terapia , Transplante de Células-Tronco/métodos , Transplante Autólogo
17.
Acta Biomater ; 55: 385-395, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28351682

RESUMO

Recent advances in induced pluripotent stem cell (iPSC) technology have paved the way for the production of patient-specific neurons that are ideal for autologous cell replacement for treatment of neurodegenerative diseases. In the case of retinal degeneration and associated photoreceptor cell therapy, polymer scaffolds are critical for cellular survival and integration; however, prior attempts to materialize this concept have been unsuccessful in part due to the materials' inability to guide cell alignment. In this work, we used two-photon polymerization to create 180µm wide non-degradable prototype photoreceptor scaffolds with varying pore sizes, slicing distances, hatching distances and hatching types. Hatching distance and hatching type were significant factors for the error of vertical pore diameter, while slicing distance and hatching type most affected the integrity and geometry of horizontal pores. We optimized printing parameters in terms of structural integrity and printing time in order to create 1mm wide scaffolds for cell loading studies. We fabricated these larger structures directly on a porous membrane with 3µm diameter pores and seeded them with human iPSC-derived retinal progenitor cells. After two days in culture, cells nested in and extended neuronal processes parallel to the vertical pores of the scaffolds, with maximum cell loading occurring in 25µm diameter pores. These results highlight the feasibility of using this technique as part of an autologous stem cell strategy for restoring vision to patients affected with retinal degenerative diseases. STATEMENT OF SIGNIFICANCE: Cell replacement therapy is an important goal for investigators aiming to restore neural function to those suffering from neurodegenerative disease. Cell delivery scaffolds are frequently necessary for the success of such treatments, but traditional biomaterials often fail to facilitate the neuronal orientation and close packing needed to recapitulate the in vivo environment. Here, we use two-photon polymerization to create prototype cell scaffolds with densely packed vertical pores for photoreceptor cell loading and small, interconnected horizontal pores for nutrient diffusion. This study offers a thorough characterization of how two-photon polymerization parameters affect final structural outcomes and printing time. Our findings demonstrate the feasibility of using two-photon polymerization to create scaffolds that can align neuronal cells in 3D and are large enough to be used for transplantation. In future work, these scaffolds could comprise biodegradable materials with tunable microstructure, elastic modulus and degradation time; a significant step towards a promising treatment option for those suffering from late-stage neurodegeneration, including retinal degenerative blindness.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Membranas Artificiais , Retina/metabolismo , Degeneração Retiniana/terapia , Alicerces Teciduais/química , Humanos , Porosidade , Degeneração Retiniana/metabolismo , Degeneração Retiniana/patologia
18.
Sci Rep ; 6: 30742, 2016 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-27471043

RESUMO

Immunologically-matched, induced pluripotent stem cell (iPSC)-derived photoreceptor precursor cells have the potential to restore vision to patients with retinal degenerative diseases like retinitis pigmentosa. The purpose of this study was to develop clinically-compatible methods for manufacturing photoreceptor precursor cells from adult skin in a non-profit cGMP environment. Biopsies were obtained from 35 adult patients with inherited retinal degeneration and fibroblast lines were established under ISO class 5 cGMP conditions. Patient-specific iPSCs were then generated, clonally expanded and validated. Post-mitotic photoreceptor precursor cells were generated using a stepwise cGMP-compliant 3D differentiation protocol. The recapitulation of the enhanced S-cone phenotype in retinal organoids generated from a patient with NR2E3 mutations demonstrated the fidelity of these protocols. Transplantation into immune compromised animals revealed no evidence of abnormal proliferation or tumor formation. These studies will enable clinical trials to test the safety and efficiency of patient-specific photoreceptor cell replacement in humans.


Assuntos
Cegueira/patologia , GMP Cíclico/metabolismo , Células-Tronco Pluripotentes Induzidas/citologia , Organoides/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Degeneração Retiniana/patologia , Adulto , Animais , Cegueira/etiologia , Cegueira/terapia , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Mutação , Organoides/transplante , Receptores Nucleares Órfãos/genética , Células Fotorreceptoras Retinianas Cones/metabolismo , Degeneração Retiniana/congênito , Degeneração Retiniana/terapia , Pele/citologia , Pele/metabolismo , Transplante Autólogo
19.
Autophagy ; 12(10): 1876-1885, 2016 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-27463423

RESUMO

Autophagy is critical for maintaining cellular homeostasis. Organs such as the eye and brain are immunologically privileged. Here, we demonstrate that autophagy is essential for maintaining ocular immune privilege. Deletion of multiple autophagy genes in macrophages leads to an inflammation-mediated eye disease called uveitis that can cause blindness. Loss of autophagy activates inflammasome-mediated IL1B secretion that increases disease severity. Inhibition of caspase activity by gene deletion or pharmacological means completely reverses the disease phenotype. Of interest, experimental uveitis was also increased in a model of Crohn disease, a systemic autoimmune disease in which patients often develop uveitis, offering a potential mechanistic link between macrophage autophagy and systemic disease. These findings directly implicate the homeostatic process of autophagy in blinding eye disease and identify novel pathways for therapeutic intervention in uveitis.


Assuntos
Autofagia , Oftalmopatias/patologia , Inflamação/patologia , Macrófagos/patologia , Animais , Autofagia/genética , Proteína 5 Relacionada à Autofagia/metabolismo , Proteínas Relacionadas à Autofagia/genética , Citocinas/genética , Citocinas/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Inflamação/genética , Interleucina-1beta/metabolismo , Macrófagos/ultraestrutura , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Uveíte/complicações , Uveíte/genética , Uveíte/patologia
20.
Hum Gene Ther ; 27(10): 835-846, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27400765

RESUMO

Juvenile neuronal ceroid lipofuscinosis (JNCL) is a childhood neurodegenerative disease with early-onset, severe central vision loss. Affected children develop seizures and CNS degeneration accompanied by severe motor and cognitive deficits. There is no cure for JNCL, and patients usually die during the second or third decade of life. In this study, independent lines of induced pluripotent stem cells (iPSCs) were generated from two patients with molecularly confirmed mutations in CLN3, the gene mutated in JNCL. Clinical-grade adeno-associated adenovirus serotype 2 (AAV2) carrying the full-length coding sequence of human CLN3 was generated in a U.S. Food and Drug Administration-registered cGMP facility. AAV2-CLN3 was efficacious in restoring full-length CLN3 transcript and protein in patient-specific fibroblasts and iPSC-derived retinal neurons. When injected into the subretinal space of wild-type mice, purified AAV2-CLN3 did not show any evidence of retinal toxicity. This study provides proof-of-principle for initiation of a clinical trial using AAV-mediated gene augmentation for the treatment of children with CLN3-associated retinal degeneration.


Assuntos
Terapia Genética/métodos , Células-Tronco Pluripotentes Induzidas/transplante , Glicoproteínas de Membrana/genética , Chaperonas Moleculares/genética , Lipofuscinoses Ceroides Neuronais/terapia , Degeneração Retiniana/terapia , Animais , Dependovirus/genética , Fibroblastos/metabolismo , Humanos , Glicoproteínas de Membrana/uso terapêutico , Camundongos , Chaperonas Moleculares/uso terapêutico , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/metabolismo , Retina/metabolismo , Retina/patologia , Degeneração Retiniana/genética , Degeneração Retiniana/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA